您现在的位置是: 首页 > 新车发布 新车发布
普锐斯汽车工作原理图解_普锐斯汽车工作原理图解视频
zmhk 2024-05-17 人已围观
简介普锐斯汽车工作原理图解_普锐斯汽车工作原理图解视频 现在,请允许我来为大家解答一些关于普锐斯汽车工作原理图解的问题,希望我的回答能够给大家带来一些启示。关于普锐斯汽车工作
现在,请允许我来为大家解答一些关于普锐斯汽车工作原理图解的问题,希望我的回答能够给大家带来一些启示。关于普锐斯汽车工作原理图解的讨论,我们开始吧。
1.丰田普锐斯小电瓶位置 丰田普锐斯双电瓶原理介绍
2.丰田混动原理
3.丰田混动那么省油的原理是什么?
丰田普锐斯小电瓶位置 丰田普锐斯双电瓶原理介绍
1、丰田普锐斯的小电瓶位置在大灯开关后的仪表板内部。
2、丰田普锐斯车辆配备了2块电瓶,双电瓶系统,引擎室为起动电瓶,车辆后方为车身电系电瓶,双电瓶系统确保了车身电器的工作稳定性,电瓶容易损坏是因为起动机需要很大的电流工作,而电量稍有不足,就难以支持车辆的用电,导致车身电脑的数据发生错误。
3、丰田普锐斯采用双电瓶,前舱电瓶只为起动机工作,车内电瓶用来确保车身电器工作,而且闭车后,车内电瓶还会为启动电瓶持续充电15分钟,保证下次启动顺畅。
丰田混动原理
电动汽车的主要能源必须是高压动力电池。电瓶车和传统燃油车最大的区别在于能源。燃油车的能源是汽油,通过火花塞点火爆炸做功,通过发动机的反馈控制和排放处理,将废气排放到大气中。随着汽车数量的增加,环境污染和能源消耗越来越严重。随着时代的发展,零排放电动汽车已经开始发展。可以说,每个国家都在大力发展新能源汽车。我国发展新能源汽车是“弯道超车”,重点发展纯电动汽车,特别是在一些经济发展较好的城市,电动车随处可见。然后,我们来分析一下电动汽车的能源——高压动力电池。
电动汽车结构分析
电动汽车主要由电驱动系统、机械传动系统、电池系统和充电系统组成,其中电驱动系统是整个电动汽车实现能量转换的核心,比如将电池的电能输出给电机,机械传动装置将传递的电能以机械能的形式传递给驱动轮。
我们以纯电动车结构为例,如下图所示。汽车行驶时,电池输出的电能由控制系统计算,电机的转动由控制器(变频器)控制,电机输出的扭矩通过传动系统是车轮前进或后退。
控制系统可以根据各种路况下的车速、油门踏板位置传感器的开启信号和加速度等进行能量转换。电机的逆变器不同,控制器也不同。控制器将动力电池的DC功率转换成交流功率来驱动交流电机。
电动车的动力电池分析
其实市场上有两种动力电池:镍氢电池和磷酸铁锂电池。例如,丰田最省油的混合动力系统THS-II使用丰田卡罗拉、雷克萨斯和普锐斯,别克君威和本田CRV等其他品牌,国外特斯拉纯电动汽车使用三元锂电池,或钴酸锂电池。
镍氢电池
目前,大多数混合动力汽车使用镍氢电池。这种电池的正极是氢氧化镍,负极是金属氧化物,电解液是30%的氢氧化钾。金属氧化物的工作原理是水溶液中的氢离子运动产生电流,然后氢气会在负极上逐渐消耗掉。工作原理如下图所示。
使用镍氢电池没有重金属污染的问题。镍氢电池的比能量较高,可超过70WH/kg,比功率为200W/kg,单电池额定电压为1.2V,通常10个单电池组成12V电池组,也有7个电池组成的7.4V电池组,如普锐斯,其电容为6.5AH,整体电池电压为201.6V
镍氢电池具有很强的充放电能力。在工作过程中,阳极释放氧气,阴极释放氢气。这两种气体很容易结合成电池内部的水,保持内部压力不变,基本不需要调节电解液的密度。
磷酸铁锂电池
磷酸铁锂电池正极为磷酸亚铁锂结构,负极为石墨,中间隔板为聚乙烯,电池中间上下两侧装有有机电解液。当电池温度异常时,中间隔板可以阻挡锂离子的通过,防止电池内部电流短路。
电池放电时,锂离子从石墨负极板析出,通过中间隔板到达正极板,从而产生电流;在充电过程中,锂离子在电动势的作用下从正极沉淀到负极。
铁锂电池的电芯电压为3.2V,最大电压可达3.6V,最大沸点电压为2.0VV,这类电池为“18650”形状的绕组结构。电池直径18毫米,高度65毫米,最大容量3100毫安时。
磷酸铁锂电池没有电池的记忆响应,也就是在使用过程中如果发现车内所剩电量很少,可以找附近的充电站进行充电,不会影响电池的性能,充电前也不需要用完最后一点电量。镍氢电池不一样。如果用于插电式混合动力汽车,则需要在电池第一次充满电后使用。这是因为这两种电池的电池记忆效果不同。
总结
电动汽车的主要能源是动力电池,动力电池分为镍氢电池和磷酸铁锂电池,分别适用于混合动力和纯电动汽车。长时间使用后,原单电池的性能会出现一些差异,比如电压达不到原来的水平,续航里程达不到要求的里程等。因此,发现故障后必须及时对电池进行测试。
百万购车补贴
丰田混动那么省油的原理是什么?
现在汽车已经成为我们日常的出行工具。由于在使用过程中难免会遇到一些问题,比如丰田汽车的混合动力技术原理,而下面小编为大家详细介绍。丰田汽车有三种混合动力技术,分别是增程式混合动力系统、并联式混合动力系统和平行-并联式混合动力系统。首先来看增程式混合动力系统,这种系统非常简单。配备这种系统的汽车的电机立即驱动车轮,但汽车也将配备一台汽油发动机。这个发动机是用来带动发电机发电的,发电后可以储存在电池里,让电池给电机供电。大部分并联式混合动力汽车都是基于带有电池和电动机的内燃机。这种车的发动机可以带动车轮,电机也可以带动车轮。当电机不驱动车轮时,还可以回收动能给电池充电。而平行-并联式混合动力系统,如其名字所示,是混合了两种混合动力技术:并联式混合动力系统和串联式混合动力系统。混合动力汽车有两个电动机,其中一个可以立即驱动车轮,另一个可以驱动车轮或充当发电机发电。当车辆完全加速时,两个电机和一个发动机共同驱动车轮,这种混合动力汽车的性能相当强劲。丰田作为混合动力汽车技术的领先者,其技术已经相当成熟。早在很多年前,丰田就已经推出了自己的混合动力车型,其中最为知名的是丰田普锐斯。在北美市场,很多消费者购买的基本都是混合动力的普锐斯汽车,但在国内普锐斯并没有引进销售。
1977年第一代普锐斯的诞生让丰田在混动界的地位因此被确立,并逐渐成为各汽车厂混动系统的标杆。截止目前,虽然出现了多种多样的混动系统,但几乎所有的混动系统是不是先进都自觉不自觉的与丰田的这套混动系统作比较,更有戏说“全世界混动只有两种:丰田和其它”。丰田的混动系统官方的叫法为THS(Toyota Hybrid System),目前已经发展到第二代THSⅡ。并且搭载在多款车型,截止目前,搭载丰田混动系统的车型总销量已经超过1300万辆。虽然目前丰田在国内投放了多款混动车型,但国内消费者最早听说丰田混动的应该就是第二代普锐斯了吧。虽然丰田在普锐斯的1.8L阿特金森循环发动机的基础上开发出了1.5L、2.5L、3.5L混动系统,甚至开发出了e-four电控四驱系统,但是丰田混动系统的本质并没有发生改变,这才是丰田混动系统的灵魂,那么这套系统是如何工作的?
先说一下丰田系统的构成:
丰田的THS混动系统包括了阿特金森循环发动机、E-CVT变速箱、PCU(包括升压器和DC-DC转换器)、电池组等部件。升压器是将HV蓄电池电压升高到电机工作电压。DC-DC转换器是将MG1(发电机)的输出电压转化为12V电压给备用蓄电池供电。
而E-CVT变速箱是通过将两个电机与带行星齿轮组的无级变速机构集成。
混动原理:
其中MG1作为启动车辆和发电用电机;MG2作为驱动车辆和能量回收电机。其中MG1和MG2分别安装在与发动机相连的同一根轴上,通过无声链从主动轮传动到减速机构。
行星齿轮组一方面可以将发动机动力传递给车轮驱动车辆行驶,另一方面可以将发动机动力驱动MG1发电。
车辆起步:
在HV电池SOC正常的情况下,车辆起步,发动机不点火,通过HV电池给MG2供电,依靠MG2作为电动机驱动车辆行驶,既可以保证很好的静谧性又可以依靠电机的扭矩输出特性带来轻快感。
发动机启动:
如果HV蓄电池ECU检测HV电池SOC比较低不能通过MG2驱动车辆时,通过HV蓄电池给MG1电机供电,由MG1带动发动机启动点火,从而实现与普通燃油车一样的启动方式。
发动机启动后:
如果HV电池的SOC比较低,为了保证HV电池SOC维持在合理水平,发动机通过MG1电机发电给HV电池充电,直到SOC维持在理想状态。
车辆起步后发动机再启动:
车辆起步后,当车速达到一定的速度时,依靠MG2的扭矩不足以满足车辆继续行驶,这时候通过HV蓄电池给MG1供电,实现发动机的点火,依靠发动机和MG2共同驱动车辆行驶。
发动机启动后:
同样,为了保证HV电池合理的SOC值,发动机启动后需要通过MG1发电为HV电池充电,一直保证HV电池的SOC在合理水平,避免HV电池亏**响电池寿命。
车辆缓慢加速:
当车辆缓慢加速或者低负荷巡航时,发动机在通过行星齿轮组驱动车轮的同时,通过MG1发电为MG2提供电力共同驱动车辆行驶。这时候,发动机作为驱动车辆的主要动力,而MG2靠行星齿轮组的动力分配获得必要的动力支持。而此过程中HV电池不进行充放电,可以将SOC维持在固定水平。
车辆急加速:
当车辆全力加速时,此时发动机节气门全开,发动机进入高功率工作模式。发动机和MG2双方大功率输出保证车辆的加速性能,但是要想实现MG2动力保持,依靠MG1提供的电力已经不够,这时候增加HV蓄电池为MG2提供电力支持,这种情况下,HV电池处于快速放电的状态下,由于HV电池容量较小,所以此过程不能维持过长。
车辆减速(D档):
当车辆档位处于D档情况下减速时,发动机不工作,车轮驱动MG2使MG2作为发电机为HV电池充电。但是,当发动机突然从高速进行减速时,发动机并不会立刻停止工作,而是以一定的速度行驶,目的是为了保护行星齿轮组不受损伤。
车辆减速(B档):
当车辆处于B档减速时,能够感觉到车辆有明显的拖拽感。原因就是一方面车轮驱动MG2作为发电机为HV蓄电池充电。同时MG2需要为MG1提供电力支持,让MG1保证发动机由一定的转速,依靠发动机来为车辆制动。这个过程中发动机气缸内不会有燃油喷射,完全依靠MG1的保证发动机的转速,从而达到节油的目的。对于插电式的丰田混动,即便是完全采用纯电动的形式,发动机看似不参与工作,但是发动机也需要定期的更换机油也就是这个原因。
车辆倒车:
一般情况下,当车辆倒车时发动机不工作,依靠HV蓄电池给MG2供电,MG2反转驱动车辆倒车。
特殊情况:
特殊情况下,比如说HV蓄电池温度过低,冷却水水温过高或者HV蓄电池SOC状态低时,HV蓄电池也会为MG1提供电力实现发动机点火。而发动机启动后,也会像车辆正常启动时的情况一样,发动机通过MG1发电为HV蓄电池充电。
补充说明:
SOC:State Of Charge即HV蓄电池工作状态。丰田的混动车辆蓄电池保持在一个合理的状态,从而保证电池的稳定性。
当SOC过高或过低时,一方面容易造成电池寿命衰减,另一方面也可能造成电池温度的异常。
写在最后:
丰田的混动技术之所以能省油,主要原因就是丰田充分考虑了车辆不同工作环境下的工作模式,尽最大限度的发挥电动机的扭矩输出特性,也尽最大限度的保证发动机在最优化区间内工作。同时,得益于高热效率(41%)的阿特金森循环发动机,可以实现更低的油耗表现。
丰田混动电池可以实现8年20万公里的质保(广汽丰田双擎车型电池永久质保),其中一方面的原因就是蓄电池ECU对于电池SOC的管理极其精细,防止电池过充电和过放电,最大限度的维持电池SOC在合理区间内,延长电池的使用寿命。
丰田基于THS混动技术不断进行技术更新,通过PCU和电机优化,混动效率得到进一步提升。同时基于此混动技术,衍生出了插电式混动车型以及EV纯电车型。未来,随着国家油耗标准的越来越严格,丰田将在中国市场导入更多的混动车型。伴随着零部件的国产化比例不断提升,混动车型的价格也将进一步下探,未来混动车型在市场的竞争力将不断提升。
非常高兴能与大家分享这些有关“普锐斯汽车工作原理图解”的信息。在今天的讨论中,我希望能帮助大家更全面地了解这个主题。感谢大家的参与和聆听,希望这些信息能对大家有所帮助。